Trends in Wireless Communications For Automobiles
Leading to SDR and Implications for Antennas

A Session Presentation for
12th World Congress on Intelligent Transportation Systems
November 9, 2005
San Francisco
Wireless Automotive Services

• Several automotive companies have shown prototypes / concept cars with “Internet Dashboards” which provide users with direct attachment to the net and a variety of displays including
 – Voice synthesis
 – Color graphics
 – Motion Video

• This is just a sign of the rapidly growing number of wireless services users wish to access from their vehicles such as:
 – Cellular telephony
 – GPS
 – Navigation Services
 – Electronic tolls
 – Highway information
 – Traffic information
 – Parking payment / information / reservation
 – Platooning of cars
 – Video of accident scene
 – Medical information
Wireless Automotive Networks

• Coverage
 – WAN’s
 • Analog / Digital Broadcast, cellular, Internet, etc.
 – Vehicle to Roadside
 • Toll collection, highway information, traffic information, vehicle guidance
 – Vehicle to Vehicle
 • Platooning, intercom, etc.
 – Intra vehicle
 • Information distribution to different occupants

• Authority / Economics
 – Fee for Service - Licensed
 – Unlicensed
 – Government Bands

• Vehicular, Handheld, or combination packaging
The Promise of SDR

- Ability to support a wide range of services with a single hardware platform
 - Minimizes volume & weight
 - Flexible to accommodate
 - Different geographic / government regions
 - Different network topologies
 - Different economic / authority network structures
 - Dynamic requirements
 - Minimizes cost
 - Maximizes convenience to users
 - Provides future proofing for relatively long life vehicles
 - Software downloads can add new capabilities required by services introduced after initial vehicle manufacture
- SDR vendors capable of delivering are beginning to appear
- SDR capability will continue to grow
Intersection of SDR

• Requirements
 – Capabilities between handset and base station
 – Flexible bandwidth
 – Cognitive capability
 • Sense what wireless resources are available
 • Accept user input on economic / QOS trade offs
 – Able to be partitioned based on
 • Criticality of service
 • Criticality of latency
 – Ability to function in automotive environment
 • Shock
 • Heat
 • Etc.
Many solutions propose an antenna for each service

One antenna for each service makes the vehicle look like a porcupine

Multiple projecting antennas create a variety of problems on vehicles
 - Aesthetic
 - Aerodynamic
 • Fuel consumption, top speed, etc.
 - Wind noise
 - Reliability
Desired Antenna Solution

- Reduced number of antennas
 - Single antenna system for all information and Vehicle to Roadside Services
 - Covers desired frequency range
 - Provides diversity:
 - Space
 - Polarization
 - Conformal to the car

- Single antenna for sensing
 - Proximity of other vehicles
 - Other critical environmental sensing

- Minimizes exposure of vehicle occupants to RF radiation
Conclusion

• SDR / ITS drivers
 – Proliferation of ITS wireless systems and services
 – Dynamic nature of some service requirements
 – Rapid and continuous evolution
 – Relatively long life of vehicles
 – Desire to minimize costs, size and weight

• Partitioning of SDR / ITS systems
 – Information / payment
 – Guidance and critical environment sensing