Trends in Wireless Communications For Automobiles Leading to SDR and Implications for Antennas

A Session Presentation for 12th World Congress on Intelligent Transportation Systems November 9, 2005 San Francisco

Mark Cummings Managing Partner enVia Technology Partners 348 Camino al Lago Atherton, Ca. 94027, 650-529-1993 markcummings@envia.com

Wireless Automotive Services

- Several automotive companies have shown prototypes / concept cars with "Internet Dashboards" which provide users with direct attachment to the net and a variety of displays including
 - Voice synthesis
 - Color graphics
 - Motion Video
- This is just a sign of the rapidly growing number of wireless services users wish to access from their vehicles such as:

2

- Cellular telephony
- GPS
- Navigation Services
- Electronic tolls
- Highway information
- Traffic information
- Parking payment / information / reservation
- Platooning of cars
- Video of accident scene
- Medical information

Wireless Automotive Networks

- Coverage
 - WAN's
 - Analog / Digital Broadcast, cellular, Internet, etc.
 - Vehicle to Roadside
 - Toll collection, highway information, traffic information, vehicle guidance
 - Vehicle to Vehicle
 - Platooning, intercom, etc.
 - Intra vehicle
 - Information distribution to different occupants
- Authority / Economics
 - Fee for Service Licensed
 - Unlicensed
 - Government Bands
- Vehicular, Handheld, or combination packaging

The Promise of SDR

- Ability to support a wide range of services with a single hardware platform
 - Minimizes volume & weight
 - Flexible to accommodate
 - Different geographic / government regions
 - Different network topologies
 - Different economic / authority network structures
 - Dynamic requirements
 - Minimizes cost
 - Maximizes convenience to users
 - Provides future proofing for relatively long life vehicles
 - Software downloads can add new capabilities required by services introduced after initial vehicle manufacture
- SDR vendors capable of delivering are beginning to appear
- SDR capability will continue to grow

Intersection of SDR

- Requirements
 - Capabilities between handset and base station
 - Flexible bandwidth
 - Cognitive capability
 - Sense what wireless resources are available
 - Accept user input on economic / QOS trade offs
 - Able to be partitioned based on
 - Criticality of service
 - Criticality of latency
 - Ability to function in automotive environment
 - Shock
 - Heat
 - Etc.

The Porcupine Problem

- Many solutions propose an antenna for each service
- One antenna for each service makes the vehicle look like a porcupine
- Multiple projecting antennas create a variety of problems on vehicles
 - Aesthetic
 - Aerodynamic
 - Fuel consumption, top speed, etc.
 - Wind noise
 - Reliability

Desired Antenna Solution

- Reduced number of antennas
 - Single antenna system for all information and Vehicle to Roadside Services
 - Covers desired frequency range
 - Provides diversity:
 - Space
 - Polarization
 - Conformal to the car
 - Single antenna for sensing
 - Proximity of other vehicles
 - Other critical environmental sensing
 - Minimizes exposure of vehicle occupants to RF radiation
 7

Conclusion

- SDR / ITS drivers
 - Proliferation of ITS wireless systems and services
 - Dynamic nature of some service requirements
 - Rapid and continuous evolution
 - Relatively long life of vehicles
 - Desire to minimize costs, size and weitght
- Partitioning of SDR / ITS systems
 - Information / payment
 - Guidance and critical environment sensing

