

European DSRC Applications Developments

Guy FREMONT R&D Manager - COFIROUTE

21/10/2004

Outline of presentation

- Status of DSRC standardisation
- Technical characteristics
- Electronic Toll Collection
- Infrastructure to vehicle communication
- Vehicle to vehicle communication
- Conclusion

Rules of standardisation in Europe

- CEN : Comité Européen de Normalisation (European Committee for Standardisation)
 - co-operation with ISO as much as possible
- ENV : European Norm Voluntary
 - implementation is not compulsory (voluntary)
 - revised after a period of 3 years
 - DSRC norms voted in 1997
- EN : European Norm
 - implementation is compulsory
 - DSRC finally voted in 2003-2004 !

21/10/2004

CEN DSRC norms

Reference	Voted	Subject		
EN 12253	2004	L1 - Physical layer µW 5,8 GHz		
EN 12795	2003	L2 - Data link layer (MAC/LLC)		
EN 12834	2003	L7 - Application layer		
EN 13372	2004	DSRC profiles for RTTT applications		
EN ISO 14906	2004	Electronic Fee Collection - Application interface definition		
21/10/2004 ITS World Congress Nagoya 2004 -				

SS27 DSRC Multiple Applications

Norms for EFC application

- ENV ISO 14904 : EFC Interface specification for clearing between operators (2002)
- EN ISO 14907 : EFC Test procedures for user and fixed equipment (2004)
- ENV ISO 17573 : EFC System architecture for vehicle related transport service (2003)
- ENV ISO 17574 : EFC Security framework (2003)
- prENV ISO 17575 : Application interface definition for CN/GNSS based EFC

CEN DSRC Technical characteristics

- □ Frequency bands:
 - 2 European channels : 5,795 5,805 GHz (10 MHz)
 - 2 "national" channels : 5,805 5,815 GHz
- Data rate :
 - down link : 500 Kbits/s
 - up link : 250 Kbits/s
- Power budget :
 - RSE max. EIRP : +33 dBm
 - incident power min. : -43 dBm
- □ Passive OBU :
 - reflecting and keying of the carrier wave received from the RSE (no µW oscillator in the OBU)
- Communication zone : 10-20 m

DSRC current applications

□ ETC – Electronic Toll Collection

by far the largest DSRC application in volume

Other payment applications

- payment of parking facilities
- payment of fuel in gas stations
- access control to city centres

ETC systems in Europe

- More than 9 million users
- About 10 000 ETC lanes
- 150 million ETC transactions
 / month
- Interoperability ... at national level only
- European Directive for Interoperability
- Introduction of GPS/GSM based ETC systems (Germany in 2005, UK ?)

21/10/2004

ETC systems in Europe (mid 2004)

Countries	ETC Name	NB of tags	NB of ETC lanes
Italy	TELEPASS	4 000 000	2 500
Portugal	VIA VERDE	1 600 000	500
France	LIBER-T	1 100 000	3 200
Norway	AutoPASS	1 100 000	250
Austria	GO !	350 000	2 500
Spain	VIA-T	300 000	800
Denmark	BroBIZZ	150 000	8
Sweden	BroBIZZ	100 000	6
UK	DarTAG	150 000	100
Ireland	?	50 000	25
Greece	?	35 000	50

Non CEN compliant

CEN compliant after upgrade

ETC in different configurations

21/10/2004

Existing DSRC applications

- □ Traffic, weather, incident data collection
- Travellers information
- □ Alert information, warning
- Travel times measurement
- Hazardous transport vehicles monitoring
- Intelligent Speed Adaptation

AIDA : Information on Highways

21/10/2004

AIDA : principles of data transmission

Communication with the vehicles

Data processing and transmission to the vehicles

COFIROUTE

21/10/2004

The AIDA services

AIDA : an on-board system providing real time information dedicated to safe and comfortable highway driving

Traffic conditions		Road information	
• accidents		• recommended exits	
• perturbances		• distance to next exits	
• road works		• estimated time of arrival	
• traffic jams		• relief routes	
Weather conditions		Personalised traffic information	
• fog		• tourist information	
• low temperature		• petrol stations with brand and price	
• heavy rain		• service and rest areas	
	Interactive services incidents signalling 		
21/10/2004	ITS World Congress Nagoya 2004 -		

- European harmonisation of TTI systems using DSRC communication (1998-2001)
- Inputs coming mainly from AIDA (France) and RTA (UK)
- prENV ISO 14822 : Medium range preinformation via DSRC : General specification
- Draft of standard now ready for vote

DELTA = DSRC tag integration in the vehicle

Objective : Integration of the DSRC tag as standard equipment in the vehicle

21/10/2004

Travel times measurement

- Beacons installed over each traffic lanes
- □ Interval : 5 20 Km
- All vehicles with ETC tag
- Privacy = anonymous !
- □ 2 techniques :
 - Read only (ID) : AREA, ESCOTA
 - R/W (D_PASS) : COFIROUTE
- Processing in central system

Hazardous transport vehicles monitoring

COFIROUTE

ESCOTA

SS27 DSRC Multiple Applications

Vehicle to vehicle communication

- TRAVIATA project
- MTNET
- □ IVHW
- CarTALK2000
- FleetNet

... ...

Co-operative Systems

TRAVIATA project

- An attempt to perform V-V communication via DSRC
 - Emergency warning between vehicles
- CEN DSRC not suitable for V-V :
 - good communication at 20 m max
 - probability of good communication at 50 m if messages repeated 100 times
 - communication not possible at more than 100 m

MTNET

MTNET developed and tested in ARCOS

(ARCOS = Concerted action for safe driving)

- 5,915 5,935 GHz, band allocated for safety in transport
- 2 Mbits/s, robust, multi-point
 - transmitter power : 100 mW
 - range : > 500 m, extensible with relays on vehicles or infrastructure
- MTNET is in line with CALM M5

Radio transmission of alerts between vehicles

- Communication : up to 1 km (100 mW)
- Expandable to vehicle infrastructure communication
 - transmitters on emergency call boxes
- □ Frequency band : 869 MHz (free)
- Low cost transmitter/receiver

IVHW

COFIROUT

CarTALK2000

- Application : co-operative driver assistance
- Inter-vehicle communication based on a mobile ad hoc network
 - UTRA-TDD radio system developed by Siemens
 - adaptation of the centrally organised UMTS technology to a decentralised, mobile ad-hoc network
- □ Frequency : 2010 2020 MHz
- □ Supports high speed mobility : < 500 Km/h

Co-operative Systems (1)

- Objective : safe, efficient and comfortable driving
- Principles : information exchanged between vehicles and infrastructure
- Possible applications :
 - Alert info and warning
 - Speed Alert
 - Intelligent Speed Adaptation
 - Early breaking
 - Longitudinal control
 - Lateral control
 - ...
 - Automated vehicles / highway

Co-operative Systems (2)

European Commission FP6 call for proposal expected in December 2004

eSafety – Co-operative Systems for Road Transport

- "road operators, infrastructure, vehicles, their drivers and other road users will co-operate to deliver the most efficient, safe, secure and comfortable journeys"
- "the vehicle-vehicle and vehicle-infrastructure co-operative systems will contribute to these objectives beyond the improvements achievable with stand-alone systems"
- Several projects in preparation to cover this theme
- Projects time schedule : 2005-2008

Conclusion

- Stand alone systems are not sufficient to improve road safety
- Co-operative systems are required
- V-V and V-I reliable communications are essential
- CEN DSRC systems do not provide an adequate solution
- UHF, UMTS, WiFi, WiMAX, 802.11x explored as possible solutions
- Research will be carried out within EU FP6
- Partnership between all stakeholders is foreseen
- Communication network shall be managed by road authorities/operators