VSC development in Japan

Takaaki HASEGAWA Saitama University

Outline

- Introduction
- Activities in Japan
 - ITS Info-communications Forum/ "Inter-Vehicle Communications Systems Expert Group"
 - JARI/ ITSC
 - AHSRA
- Personal view on vehicle safety and communication
- Conclusions

Introduction

- Vehicle safety and communication
- ITS and business
- Safety is a public matter or a private matter?
- [Terminology] Dedicated Short Range Communications
 - Vehicle-to-Vehicle Communication (Inter-vehicle Communication)
 - Roadside-to-Vehicle Communication
 - V-R-V Communication
 - Vehicle Data Sharing

Communication systems from the viewpoint of ITS architecture (USA)

"VSC development in Japan" Takaaki HASEGAWA

Communication systems from the viewpoint of ITS architecture (Japan)

- (*) 有線通信は、一般的には広域有線通信であるが、衛星通信など広域無線通信での代替もあり得る。
- (**)狭域通信(路車間)は、路側と車及び人の間で行われる狭域通信を示す。

… 高い評価点が得られたサブシステム

"VSC development in Japan" Takaaki HASEGAWA

VSC activities in Japan

- ITS Info-communications Forum/ "Inter-Vehicle Communications Systems Expert Group"
- JARI/ ITSC (Japan Automobile Research Institute / ITS Center)
- AHSRA (Advanced Cruise-Assist Highway System Research Association)

Inter-Vehicle Communications Systems Expert Group(1)

Study Approach of Vehicle-to-Vehicle
 Communications

"VSC development in Japan" Takaaki HASEGAWA

Inter-Vehicle Communications Systems Expert Group(2)

Inter-Vehicle Communications Systems Expert Group(3)

• Example of vehicle communication systems

No.	Applications	Serv	rices	Servic Microwave	e band Millimeter-wave	Discussion
1		Automatically stop and go smoothly, when cars are in traffic jam.		INICI OWAVE	Minimeter - wave	(1st.)
2	Cooperative driving	Cooperative driving by exchanging respective cruising data				
3	Hazard warning	Obstacle warning Stopped vehicle waring Slowing down vehicle warning				
4	Merging & lane change warining	Cars of main line and a car merging comunicate for safe and smooth line change				
5	Intersection & winding curve collision warnig	Cars out of sight communicate for safe and smooth cruise				(1st.)
6	Inter/intra- platoon communication	Ad Hoc communication between cars				

"VSC development in Japan" Takaaki HASEGAWA

Inter-Vehicle Communications Systems Expert Group(4)

• Communication specifications

	Stop & Go	Intersection Collision Warning
Frequency Band	60 GHz	5.8 GHz
Modulation	FSK	/4-QPSK(ASK)
Modulation Speed	512 Kbps/128 kbps	640 kbps/4 Mbps
Media Access	CSMA	CSMA
Emission Power	less than 10 mW	less than 10 mW

Inter-Vehicle Communications Systems Expert Group(5)

• IVC Mapping

"VSC development in Japan" Takaaki HASEGAWA

Inter-Vehicle Communications Systems Expert Group(6)

"VSC development in Japan" Takaaki HASEGAWA

JARI ITS-Center(1)

- JARI ITS-Center was established on July 1st 2003
- It takes over the activities of JSK (integrated into new-JARI)

- There are two main fields of activity:
 - Research (pre-competitive phase)
 - International standardization (ISO/TC204)

JARI ITS-Center(2)

- JSK started Inter-vehicle Communication study in the early 1980s.
- In 90s, the study was focused on IVC for cooperative driving .
- The study result was shown in Demo2000.
- JARI ITS-Center (Ex-JSK) started IVC standardization activity in 2003.

JARI ITS-Center(3)

- Two main subjects of 2002 :
 - /Construct "Concept Reference Model for IVC"
 - /Acquire DSRC field data on Intersection Collision Warning Application
- IVC is expected to support various VS (Vehicle Safety) applications.
- IVC standardization is inevitable to realize VS applications.

Profile of AHSRA(1)

Name	Advanced Cruise-Assist Highway System Research Association (AHSRA)
Leading	Ministry of Land, Infrastructure and
Ministry	Transport (MLIT)
Research	National Institute for Land and
Trust	Infrastructure Managements (NILIM)
Objective	The purpose of AHSRA is to develop the Advanced Cruise-Assist Highway Systems (AHS), which will achieve significant improvements in road traffic safety and efficiency by applying information technology (IT) to road infrastructure.

"VSC development in Japan" Takaaki HASEGAWA 03-09-03

Profile of AHSRA(2)

Established	September 25, 1996, based on the Mining research Association law and with approval from the Minister of Construction (since renamed)

Members18 Japanese Private Companies

Associate Members **350 Organizations and Persons**

Positioning of AHSRA

Cooperation between Public and Private

- •The MLIT(Ministry of Land, Infrastructure and Transport) establishes top policy for AHS.
- The NILIM(National Institute for Land and Infrastructure Management) of the Ministry of Land, Infrastructure and Transport carries out R&D of AHS in cooperation with AHSRA.

"VSC development in Japan" Takaaki HASEGAWA 03-09-03

Cooperative Driver Assistance System

ASV: Advanced Safety Vehicle AHS: Advanced cruise-assist Highway System

"VSC development in Japan" Takaaki HASEGAWA 03-09-03

Basic Concepts of AHS

Tests on Actual Roads of AHS

Proving tests on actual roads were conducted for AHS using DSRC at 6 test sites.

"VSC development in Japan" Takaaki HASEGAWA

Personal view on vehicle safety and communication

- Today's Theme
 - Vehicle safety and communication

Effect of VSC from results of our simulations(1)

• Vehicle density property (10km, three lanes)

"VSC development in Japan" Takaaki HASEGAWA 03-09-03

Effect of VSC from results of our simulations(2)

- Two types of VSC evaluation indexes
 - From the viewpoint of road administrators
 Accidents frequency within an area
 - From the viewpoint of drivers

Accidents frequency for each driver

Effect of VSC from results of our simulations(3)

• Equipped ratio property

Effect of VSC from results of our simulations(4)

• Equipped ratio property (from the viewpoint of drivers)

"VSC development in Japan" Takaaki HASEGAWA

My plain definition of ITS

- Human and objects transport systems sophisticated by IT
- Road, Human, Vehicle, Train, Airplane Mobility of human and objects

ITS Pentagon

• Systems' objectives in order, and concretization of systems' positioning

"VSC development in Japan" Takaaki HASEGAWA

Systems Innovation

- Functions
 - I/O
- Costs
 - B by C
 - Neither "seeds oriented" nor "needs oriented", but "Platform oriented"
 - Not "limited number" but "infinite number" of applications on the platform
 - common functions provided by the platform
- Migration
 - Migration of the platform itself
 - Migration of sub-platforms -> 2G to 3G, GPS receivers
 - Migration of our life styles -> many pedestrians and vehicles will have cameras

End-user Triangle

- End-user taxonomy (non-exclusive)
- Correspondence end-users to systems

Safety Driving Assistance Systems [Driver, Operator]

[Transported[TransportedObjects]P(Including ConsignorTelerand Consignee)IntLogistics Systemss

[Transported People] Telematics and Intermodal systems

Fig. ITS end-user triangle.

"VSC development in Japan" Takaaki HASEGAWA

Driving assistance system

- Incident avoidance
 - Vehicle control / Automated driving
 - Information / warning
- Functions
 - Positioning
 - Communication
 - (- HMI)
- Different level (QoS) requirements
 - Precision, delay, robustness

First and Second Category ITS Platforms

 Image: Control/Automated Driving
 Fist Category ITS Platform

 Image: Control/Automated Driving
 Fist Category ITS Platform

 Image: Control/Automated Driving
 Second Category ITS Platform

 Image: Control/Automation processing and communication
 Image: Control Category ITS Platform

Third Category ITS Platform

(RFID-Tag system's positioning and communication)

Construction of ITS Platform

• Example of construction from 50 ITS applications

"VSC development in Japan" Takaaki HASEGAWA 03-09-03

Evolutional Ubiquitous Platform for ITS (EUPITS)

• Architecture of EUPITS

ITS AP		ГS Р2	ITS AP 3	ITS AP		ITS AP 5	• •		ITS AP :		• • •		
	ITS Platform												
Infor-communication sub-platform						Positioning sub-platform					Other sub-platforms		
Mobile phone	PHS	Wireless LAN	DSRC	IP Network	Private Network	Others	GPS	Markers	PHS	Mobile phone	Camera	Others	(HMI sub-PF, Vehicle control information sub-PF, Time sub-PF, etc.)

(Medium selection depending on QoS and other conditions)

"VSC development in Japan" Takaaki HASEGAWA

03-09-03

"M-CubITS" Positioning System

• Elements of M-sequence Multimodal Marker for ITS (M³ for ITS; <u>M-cub</u>ed for <u>ITS</u>; M-CubITS)

(ref.:PNCMM)

"VSC development in Japan" Takaaki HASEGAWA 03-09-03

M-CubITS and Application Image(1)

• On the street (Pedestrian/Vehicle/Motor bike)

•

- Using the lane keeping system by white line detection, realization of realtime precise positioning without additional hardware.

M-CubITS and Application Image(2)

- For pedestrians
 - Photo-oriented direct suggestion of the direction for a pedestrian → WYSIWYAS pedestrian navigation system. (assumption of Mobile phone terminal

or PDA with a camera)

(WYSIWYG: What You See Is What You Get As the corresponding concept, WYSIWYAS: What You See Is What You Are Suggested)

"VSC development in Japan" Takaaki HASEGAWA

M-CubITS and Application Image(3)

- At basement car park or tiered parking lot, on the street
 - Besides determination of position and direction at GPS invalid area, empty space visual guidance in the large parking lot (using local positioning and communication functions)

-> WYSIWYAS Navigation

"VSC development in Japan" Takaaki HASEGAWA

Discussion(1)

- First category and Second category (Different requirements for sub-systems)
- Determination of position and direction
- Communication
- WYSIWYAS navigation HMI
- Is a killer application needed?
- Effectiveness of communications for safety depends on not only the communication function itself but also other functions such as positioning or sensing functions.

Discussion(2)

- Realization methods of unusual situation detection
 - Monitoring by roadside cameras
 - Realtime precise positioning and communications (probe car)
 - Event driven communications of abnormal trajectory
 - Fulltime communications of trajectory

"VSC development in Japan" Takaaki HASEGAWA

Discussion(3)

• Communication range in IVC

- Migration of the communication paradigm
 - Telephone network: Particular point Particular point
 - Mobile phone: Particular terminal / General area
 - ITS infor-com.: + General terminal / Particular area

Discussion(4)

• Communication sub-platform and positioning subplatform

Next Gen. DSRCMarkerWireless LAN
PHS
Mobile phoneGPS

Discussion(4)

- DSRC: R2VC and IVC
- Data sharing
- Integration of IVC and R2VC

Conclusions

- Vehicle safety activities in Japan
 - ITS Info-communications Forum/ "Inter-Vehicle Communications Systems Expert Group"
 - JARI/ ITSC
 - AHSRA
- My personal view and discussion on vehicle safety and communication
 - Safety driving assistance (first and second categories)
 - Communication and positioning (not-separately, by a platform)
 - B by C (Platform oriented) (material and unmaterial)
 - Systems Innovation (functions, costs, migration)
 - System oriented (safety and elemental techniques such as communication, positioning, HMI etc.)
 - Safety and data sharing
 - Integrated thinking way of systems technology toward safety and elemental technology (communication, positioning, HMI etc.)