移動体通信のシミュレーション技術

Mineo Takai, Ph.D. (<u>mineo@ieee.org</u>) UCLA Computer Science Department

February 27, 2008

Talk Outline

- Evaluation of network systems via simulation
- ITS simulation requirements: Propagation
- Propagation models for ITS
- ITS simulation requirements: Mobility
- ITS simulation requirements: Integration
- Development of simulation framework for ITS
- Roles of ITS simulation

Evaluation of Network Systems via Simulation: Wider Scope of Cross-Layer Interactions

- Broadening the scope of "System" to be evaluated
 - Network to "Network + Users + Environment"

ITS Simulation Requirements: Propagation

- Low Antenna Heights (1): Empirical models do not apply
 - COST-231 Hata: 30~200m (BS) 1~10m (MS)
 - COST-231 Walfisch-Ikegami: 4~ 50m (BS) 1~ 3m (MS)
 - Vehicle-to-Vehicle (V2V): 1.5~2.0m at both ends
- Low Antenna Heights (2): Vehicles themselves as obstacles
 - NLOS created by vehicles in between
- Mobile at both ends: Path loss precomputation unrealistic
 - N_{BS} x N_{MS} to N_{MS} x N_{MS}
 N_{MS}: Number of positions where MSs can possibly move
 - Accounting for moving obstacles complicates precomputation

Fast site-specific propagation model essential for ITS simulation

Propagation Models for ITS

- Common site-specific propagation model: ray-tracing
- Two ray-tracing methods depending on ways to search paths
 - Imaging method for point-to-point
 - Shooting & bouncing ray method for coverage
- Significant computational resources required for the path search
 - Numbers of reflections and diffractions limited:
 - Typically 10 and 2 respectively
- Another site-specific propagation model: wall counting
 - Direct path analysis only
 - Used mostly for indoor, some studies for outdoor
- Urban Propagation Prediction System (UPPS) proposed by Remcom, Inc. (Pennsylvania, USA)
 - Known for XFDTD

Demo: Path loss with Moving Objects (1)

- UPPS Demos
 - Vertical plane graphics generation
 - Effects of moving objects in the scene
 - When obstacles move
 - When Tx and Rx both move

Х

Demo: Path loss with Moving Objects (2)

Tx: Blue Rx: Red

Demo: Path loss with Moving Objects (3)

Demo: Path loss with Moving Objects (4)

Demo: Path loss around Intersection (1)

Demo: Path loss around Intersection (2)

แแบบองว.นูเน.บน

Demo: Path loss around Intersection (3)

ITS Simulation Requirements: Mobility & Traffic

- Driver behaviors reactive to info. carried via comm. system: Use of COTS vehicle traffic and/or driving simulators difficult
 - Vehicle traffic (congestion) information dissemination
 - Collision avoidance and other driving safety information
- Site data required not only for RF propagation: Strong correlations between
 - Streets, buildings and other GIS data
 - Mobility and distribution of comm. devices
 - Application traffic demands

Both GIS data and user behaviors essential for ITS simulation

Demo: User Behaviors on a Map (10,000 Users)

ITS Simulation Requirements: Integration of Multiple Technologies

- Integration of multiple technologies into one system simulation highly challenging
 - Unavailability of COTS model sources
 - Different time granularities required for different models
 (1:10,000:500,000)
 - Wireless communications: 1us
 - Vehicle mobility: 10ms (180km/h = 0.5m/10ms)
 - Pedestrian mobility: 500ms (3.6km/h = 0.5m/500ms)

Efficient simulation engine with flexible APIs anticipated

Scenargie System Simulation Framework

- A new system simulation framework to meet all ITS simulation requirements by Space-Time Engineering, LLC
- <u>Scenar</u>io <u>Generation and Management Framework for In-Depth</u> System Analysis and <u>Evaluation</u>
- Synergy with various technologies
 - Geographical Information System (GIS)
 - Network simulators and models (QualNet, ns-2/3 etc.)
 - RF propagation models (Wireless InSite, UPPS etc.)
 - Multi-agent simulation (Vehicle traffic, driving, pedestrian etc.)
 - Measurement traces (GPS logs, RF measurements etc.)
 - Parallel & distributed computing
- First release scheduled in April 2008
- Beta version demonstration

Roles of ITS Simulation

- Crucial to share a common set of models & scenarios for:
 - System verification and validation
 - Simulation validation against physical system measurements
 - Fair comparison of various ITS proposals
 - Identifying system requirements
- Common simulation components:
 - RF propagation model
 - Vehicle mobility model
 - Pedestrian & (motor) cycle mobility models
 - (Baseline) communication system model
 - (Typical) service & application models
 - Test & evaluation scenarios